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ABSTRACT 

 

As a data-driven technique, GRAPPA has been widely used 

for parallel MRI reconstruction. In GRAPPA, a large 

amount of calibration data is desirable for accurate 

calibration and thus estimation. However, the computational 

time increases with the large number of equations to be 

solved, which is especially serious in 3-D reconstruction. To 

address this issue, a number of approaches have been 

developed to compress the large number of physical 

channels to fewer virtual channels. In this paper, we tackle 

the complexity problem from a different prospective. We 

propose to use random projections to reduce the dimension 

of the problem in the calibration step. Experimental results 

show that randomly projecting the data onto a lower-

dimensional subspace yields results comparable to those of 

traditional GRAPPA, but is computationally significantly 

less expensive. 

 

Index Terms— GRAPPA, Dimension Reduction, 

Random Projection, Restricted Isometry Property  

 

1. INTRODUCTION 

 

Generalized autocalibrating partially parallel acquisitions 

(GRAPPA) [1] has been widely used for reconstructing MR 

images from reduced acquisitions with multiple receivers. It 

reconstructs the missing k-space data by a linear 

combination of the acquired data, where the coefficients for 

combination are estimated using some additionally acquired 

auto-calibration signal (ACS) lines. A high acceleration can 

usually be achieved when a larger number of channels are 

used in acquisition [2]. A lot of work has dedicated to 

developing phased array coils with many channels [3]. 

However, such an increase in channel numbers also 

increases the computational burden significantly at the same 

time. Most existing work attempts to address this issue by 

reducing the effective number of channels using hardware-

based approaches or software-based ones. In the hardware-

based approach [4], a hardware RF signal combiner inline 

was placed after preamplification and before the receiver 

system to construct an eigencoil array based on the noise 

covariance of the receiver array. Optimal SNR and similar 

reconstruction quality can be achieved with such a channel 

reduction. However, the requirement of additional hardware 

can be cumbersome. In contrast, the software-based channel 

reduction methods are more flexible. For example, principal 

component analysis (PCA) has been used to compress large 

array coils [5-8]. The coil compression process generates a 

new set of fewer virtual channels which can be expressed as 

a linear combination of the physical channels. In addition, 

several studies [9-11] have investigated to synthesize a 

single target channel for k-space-based reconstruction 

techniques. These methods combine data from multiple 

channels prior to calibration so that the convolution-based 

calibration and unaliasing only need to be performed once 

instead of for each channel and significant computation gain 

can be achieved.  

Random projection is another useful method in data 

dimension reduction [12,13]. The concept of random 

projection is related to compressed sensing, a topic that has 

attracted a lot attentions recently. By projecting the data to 

lower dimensions using some random matrices with certain 

properties, the useful information is still preserved in the 

reduced data. Since GRAPPA calibration involves solving a 

large well-over-determined equation, we expect random 

projection would help reduce the equation to a slightly over-

determined equation without compromising the information. 

In this paper, we propose to use random projection to 

reduce the dimension in GRAPPA calibration. Random 

matrices that have been proved to satisfy the restricted 

isometry property [14] are used as the projection matrices. 

As a result, the over-determined equation in GRAPPA 

calibration can be solved in a lower dimension and thereby 

in a shorter time. Our experiment results demonstrate that 

the proposed method can achieve the same reconstruction 

quality with only 1/6 the computation time of the 

conventional GRAPPA. 

 

2. COMPLEXITY OF GRAPPA 

 

The GRAPPA reconstruction can be represented as 
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where the unacquired k-space signal Sj on the left-hand side 

is obtained by a linear combination of the acquired k-space 



signals on the right-hand side. Here w denotes the coefficient 

set, R represents the reduction factor,  j is the target coil, l 

counts all coils, b and h transverse the acquired neighboring 

k-space data in ky and kx directions respectively, and the 

variables kx and ky represent the coordinates along the 

frequency- and phase-encoding directions, respectively. The 

formulation of GRAPPA can be simplified as a matrix 

equation  

m l m n n l  b A x ,                        (2) 

where A represents the matrix comprised of the acquired 

data, b denotes the vector of the missing data, and x 

represents the coefficients. In general, the coefficients 

depend on the coil sensitivities and are not known a priori. 

In GRAPPA, some auto-calibration data are acquired and 

used as the vector b to estimate the coefficient vector x 

based on the shift-invariant property. In this case, the least-

squares method is commonly used to calculate the 

coefficients: 
2
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x

x b Ax  .                              (3) 

Since there are usually much more ACS data available to set 

up Eq. (2) than the number of unknown equations, the 

problem is well over-determined and the solution is given 

by: 
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In summary, there are two parts in the GRAPPA 

reconstruction process: the calibration process and the 

synthesis process. The computational expense of each part 

can be estimated using matrix multiplication and inversions. 

The calibration part requires 
2 3

2mn lmn n   complex-

valued multiplications. Assuming R is the outer reduction 

factor (ORF), 
p

N  is the number of phase-encoding lines that 

are possible fit locations along the phase-encoding direction, 

x
N  is the number of points along the frequency encoding 

direction, 
c

N  is the total number of all channels for the 

original k-space data, and 
x

d  and 
y

d  are the convolution 

size of GRAPPA along the frequency-encoding and phase-

encoding directions respectively,  then m = 
p x

N N , n = 

dxdyNc and l = (R – 1)Nc [15]. Furthermore, in the synthesis 

step of GRAPPA, 
2
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multiplications are needed, where 
u

N  is the number of 

phase-encoding lines to be synthesized at a particular phase-

encoding offset location. Therefore, the total computational 

expense for GRAPPA reconstruction is approximately on 

the order of 
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used 32 ACS lines and reconstruction parameters [15] Nacs = 

32, Nx = 256, dx = 13, dy = 4, R = 2, Nu = 112, Nc = 8, 

SlideBlock = 4,  1 32p acsN N R    , the ratio between 

the calibration and synthesis processes are 16
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which suggests the calibration process dominates the total 

computational time. Reduction of the calibration cost would 

reduce the total cost directly. 

 

3. PROPOSED DIMENSION REDUCTION METHOD 

FOR GRAPPA 

 

3.1 Random Projection 

Random projection has been shown to be very useful in data 

dimension reduction [12,13]. In random projection, an 

original m-dimensional data is projected to a k-dimensional 

(k<<m) subspace, using a random k×m matrix R, with a 

dimension reduction factor m/k. The key idea of random 

mapping arises from the Johnson-Lindenstrauss lemma [16]: 

if points in a vector space are projected onto a randomly 

selected subspace of suitably high dimension, then the 

distances between the points are approximately preserved.  

 

LEMMA (Johnson and Lindenstrauss, 1984) Suppose we 

have an arbitrary matrix 
n m

 A . Given any 0  , 

there is a mapping :
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that for any two rows ,u v  A , we have 
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The theorem states that we can find such an f for any matrix 

A, but does not state how to find such an f. Apparently the 

criterion in Eq. (5) shares similarity with the well-known 

restricted isometry property (RIP) in compressed sensing 

[17]. Many studies have investigated linear transformations 

that satisfy the RIP. These matrices can be used for f as long 

as k is greater than 
2

log
12

n


. Random matrices from certain 

distributions have been shown to satisfy RIP. Therefore 

random projections using these matrices are good for 

dimension reduction.  In particular, when the computational 

complexity is of concern, random matrices with only 0 and 1 

elements are especially useful because no multiplication is 

needed when computing the projection. 

 

3.2 Dimension reduction for GRAPPA 

To reduce the computational cost of the calibration process 

in GRAPPA, we exploit random projection to reduce the 

dimension. Specifically, we multiply a random matrix R on 

both sides of Eq. (2): 

   1 1k m m k m m n n    R b R A x
,                      (6) 

where k is the reduced dimension and is chosen to be (2~4) 

times of n. For the same number of unknowns n, the number 

of equations have been reduced to be about (2~4) times of 

that of unknowns. Each element of R is independent random 

variables from the following distribution [18]: 
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With such a sparse binary projection matrix, a subset of 

equations are linearly combined in a random fashion to form 

a new set of equations, and with a high probability the 

important information is maintained in the lower 

dimensional space after the projection.  

Since the sparse matrix has only 0s and ±1s, the 

computational expense of random projection can be 

neglected because only additions are needed. If we assume k 

is 2n, and the commonly used GRAPPA parameters are 

used, then the size of the equation is reduced from 

8,192×416 in Eq. (3) to 832×416 in Eq. (6). The calibration 

process has a saving of approximately 10 times. Now the 

ratio between the computation time of the calibration and 

synthesis processes becomes 2.3. The computational 

expense ratio between GRAPPA and the randomly-projected 

GRAPPA (RP-GRAPPA) is 5.1, suggesting a saving of 5.1 

times. 

 

4. EXPERIMENTAL RESULTS 

 

The proposed method was tested on a set of in vivo data 

downloaded from http://www.nmr.mgh.harvard.edu/~fhlin/ 

codes/mprage_8ch_slice20.mat. The data was acquired on a 

3T SIEMENS Trio system using 3-D MPRAGE sequence 

(TE = 3.45 ms, TR = 2530 ms, TI = 1100 ms, Flip angle = 

7
o
, slice = 20, matrix = 256 x 256, slice thickness = 1.33 

mm, FOV = 256 mm
2
) and an 8-channel head array coil. The 

data was acquired in full and then manually undersampled 

retrospectively to simulate the accelerated acquisition. Both 

the conventional GRAPPA and randomly-projected 

GRAPPA (RP-GRAPPA) were used to reconstruct the final 

image from reduced acquisition. All code are written in 

MATLAB and run on a PC with 3.4GHz CPU and 16GB 

memory, except that for Figure 2. 

For the proposed randomly-projected GRAPPA, the 

random projection matrix has elements drawn from a 

Bernoulli distribution and reduces the dimension of the 

calibration equation from m to k. We define a factor 

/k n  , which represents how over-determined the new 

equation is after dimension reduction. The smaller the λ is, 

the less the equation is over-determined. 

To measure the accuracy of the proposed dimension 

reduction method, we compare reconstructions with and 

without dimension reduction both visually and quantitatively 

using normalized mean squared error (NMSE).  The 

computational time is measured in CPU time from 

MATLAB. 

4.1 2-D GRAPPA Results 

The savings by the proposed method was first evaluated in 

2-D reconstruction with 1-D undersampling. An ORF of 2 

with 32 ACS lines was used with a net acceleration of 1.78. 

A single slice of the 3-D image is reconstructed. In both 

GRAPPA and RP-GRAPPA methods, the number of blocks 

dy is 4 and the number of columns dx is 13. Figure 1 shows 

the reconstructions for GRAPPA (left) and RP-GRAPPA 

(right). The NMSEs of GRAPPA and RP-GRAPPA are 

0.035 and 0.041 respectively, and the CPU times are 27.7 s 

and 4.6 s, respectively.  The CPU time ratio between 

GRAPPA and RP-GRAPPA is /
GRAPPA RP GRAPPA

T T


 = 

27.7/4.6 ≈ 6. Such a saving in computation time roughly 

agrees with our theoretical analysis. It is seen from the 

results that the proposed RP-GRAPPA has an NMSE about 

the same as the conventional GRAPPA, but saves about 6 

times in the computational cost. 

GRAPPA  RP-GRAPPA 

Fig. 1  2-D reconstructions using GRAPPA (left) and RP-

GRAPPA (right) 

 

In order to show the relationship between λ and the 

computation time, Fig. 2 shows the curves of NMSE and 

CPU time for RP-GRAPPA as λ increases from 1 to 2.5, 

with a step of 0.1. It is seen that the NMSE decreases rapidly 

(approximately in exponential) as λ increases and becomes 

sufficiently low for λ>2, while the CPU time increases only 

approximately linearly with λ. It should be noted that the 

results shown in Figure 2 were obtained from a PC with 

1.7GHz CPU and 512MB memory to show the increment in 

time with λ more clearly. 
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Fig. 2 NMSE and CPU time of RP-GRAPPA versus λ 

4.2 3-D GRAPPA Results 

We also evaluated the performance of the proposed method 

in 3-D reconstructions with 1-D undersampling (only along 



the phase direction). An ORF of 3 with 32 ACS lines were 

used. In both methods, the number of blocks dy and dz are 4 

and 2, respectively. The number of columns dx is 11. In Fig. 

3, a single slice of the 3-D reconstructions using GRAPPA 

and the proposed method are compared. The NMSEs for the 

3-D images are 0.38 for GRAPPA and 0.40 for RP-

GRAPPA.  The CPU time for GRAPPA is 16834 s, while 

RP-GRAPPA is 1616 s, corresponding a saving of about 10 

times. Compared with GRAPPA, RP-GRAPPA saves hours 

in calibration time without compromising the image quality.  

GRAPPA RP-GRAPPA 

Fig. 3 A slice of 3-D reconstructions using GRAPPA (left) and 

RP-GRAPPA (right). 

5. CONCLUSION 

In this paper, a random project method is used to reduce the 

dimension of the over-determined equations in GRAPPA 

and thus save the computation time. Experimental results 

demonstrate that random projection can reduce the execution 

time by a factor up to 6 for 2-D GRAPPA and 10 for 3-D 

GRAPPA without compromising the reconstruction quality. 

The method is expected to be especially useful for large 

array systems with 32 or more channels.     
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